195 research outputs found

    Relative Generalized Rank Weight of Linear Codes and Its Applications to Network Coding

    Full text link
    By extending the notion of minimum rank distance, this paper introduces two new relative code parameters of a linear code C_1 of length n over a field extension and its subcode C_2. One is called the relative dimension/intersection profile (RDIP), and the other is called the relative generalized rank weight (RGRW). We clarify their basic properties and the relation between the RGRW and the minimum rank distance. As applications of the RDIP and the RGRW, the security performance and the error correction capability of secure network coding, guaranteed independently of the underlying network code, are analyzed and clarified. We propose a construction of secure network coding scheme, and analyze its security performance and error correction capability as an example of applications of the RDIP and the RGRW. Silva and Kschischang showed the existence of a secure network coding in which no part of the secret message is revealed to the adversary even if any dim C_1-1 links are wiretapped, which is guaranteed over any underlying network code. However, the explicit construction of such a scheme remained an open problem. Our new construction is just one instance of secure network coding that solves this open problem.Comment: IEEEtran.cls, 25 pages, no figure, accepted for publication in IEEE Transactions on Information Theor

    Strongly Secure Privacy Amplification Cannot Be Obtained by Encoder of Slepian-Wolf Code

    Full text link
    The privacy amplification is a technique to distill a secret key from a random variable by a function so that the distilled key and eavesdropper's random variable are statistically independent. There are three kinds of security criteria for the key distilled by the privacy amplification: the normalized divergence criterion, which is also known as the weak security criterion, the variational distance criterion, and the divergence criterion, which is also known as the strong security criterion. As a technique to distill a secret key, it is known that the encoder of a Slepian-Wolf (the source coding with full side-information at the decoder) code can be used as a function for the privacy amplification if we employ the weak security criterion. In this paper, we show that the encoder of a Slepian-Wolf code cannot be used as a function for the privacy amplification if we employ the criteria other than the weak one.Comment: 10 pages, no figure, A part of this paper will be presented at 2009 IEEE International Symposium on Information Theory in Seoul, Korea. Version 2 is a published version. The results are not changed from version 1. Explanations are polished and some references are added. In version 3, only style and DOI are edite

    New Parameters of Linear Codes Expressing Security Performance of Universal Secure Network Coding

    Full text link
    The universal secure network coding presented by Silva et al. realizes secure and reliable transmission of a secret message over any underlying network code, by using maximum rank distance codes. Inspired by their result, this paper considers the secure network coding based on arbitrary linear codes, and investigates its security performance and error correction capability that are guaranteed independently of the underlying network code. The security performance and error correction capability are said to be universal when they are independent of underlying network codes. This paper introduces new code parameters, the relative dimension/intersection profile (RDIP) and the relative generalized rank weight (RGRW) of linear codes. We reveal that the universal security performance and universal error correction capability of secure network coding are expressed in terms of the RDIP and RGRW of linear codes. The security and error correction of existing schemes are also analyzed as applications of the RDIP and RGRW.Comment: IEEEtran.cls, 8 pages, no figure. To appear in Proc. 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton 2012). Version 2 added an exact expression of the universal error correction capability in terms of the relative generalized rank weigh

    Universal coding for correlated sources with complementary delivery

    Full text link
    This paper deals with a universal coding problem for a certain kind of multiterminal source coding system that we call the complementary delivery coding system. In this system, messages from two correlated sources are jointly encoded, and each decoder has access to one of the two messages to enable it to reproduce the other message. Both fixed-to-fixed length and fixed-to-variable length lossless coding schemes are considered. Explicit constructions of universal codes and bounds of the error probabilities are clarified via type-theoretical and graph-theoretical analyses. [[Keywords]] multiterminal source coding, complementary delivery, universal coding, types of sequences, bipartite graphsComment: 18 pages, some of the material in this manuscript has been already published in IEICE Transactions on Fundamentals, September 2007. Several additional results are also include
    • …
    corecore